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Abstract
For a right-invariant system on a compact Lie group G, I present two methods to
design a control to drive the state from the identity to any element of the group.
The first method, under appropriate assumptions, achieves exact control to the
target but requires estimation of the ‘size’ of a neighborhood of the identity in
G and solution of a nonlinear algebraic equation. The second method does not
involve any mathematical difficulty and obtains control to a desired target with
arbitrary accuracy. A third method is then given combining the main ideas of
the previous methods. This is also very simple in its formulation and turns out
to be generically more efficient as illustrated by one of the examples I consider.
The methods described in the paper provide arbitrary constructive control for
any right-invariant system on a compact Lie group. In particular, the results
can be applied to the coherent control of general multilevel quantum systems
to an arbitrary target.

PACS numbers: 03.65.−w, 02.30.Yy, 02.20.Tw

1. Introduction

In the last decade, there has been significant interest in developing algorithms to control
quantum-mechanical systems. The combination of control theory and quantum mechanics has
started a new, fruitful, area of research. This area has a large overlap with quantum information
as control methods are of interest both in the practical implementation of quantum information
processing and in the design of quantum algorithms. In fact, these can be seen as sequences
of unitary operations on the quantum state and the design of these sequences can be treated as
a problem of control.

In dealing with quantum-mechanical systems which can be considered isolated from
the external environment, the Schrödinger equation is the main mathematical model. This
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equation is a linear matrix equation in cases where the system can be accurately approximated
as finite dimensional. In particular, the Schrödinger equation has the form

iẊ = HX, X(0) = 1, (1)

where H is an Hermitian matrix, 1 is the identity matrix and X, which represents the evolution of
the system, is therefore unitary at all time. Coherent control of quantum-mechanical systems
refers to the situation where the Hamiltonian H depends explicitly on some control variables
which can be chosen arbitrarily from the outside. These may be classical fields or variables
which allow us to switch among various Hamiltonians.

The geometric theory of quantum control starts from the observation that system (1)
has state X varying on a compact Lie group (the unitary group U(n)) and is a right-invariant
system (see definitions in the following section). Therefore, a lot of knowledge from the control
theory of these systems can be applied and expanded. Among the successes of this approach
is the explicit characterization of the set of achievable values for X in (1) (controllability) and
several control methods and tools for various subclasses of systems. The book [9] presents an
overview of this approach as well as some relevant references. The characterization of the set
of achievable states for a right-invariant system on a Lie group is based on a result proved in
[14] which is referred to as the Lie algebra rank condition. However, since the proof of this
result is not constructive, it does not provide a method for control of these systems which can
be applied in every situation. The goal of this paper is to develop such a method and therefore
to provide a possible control methodology for every system modeled by (1).

In section 2, I recall the Lie algebra rank condition for systems on compact Lie groups
and set up the stage for the treatment of the following sections. In section 3, I present a first
method for constructive control. This method requires the solution of a nonlinear algebraic
equation which can be difficult in higher dimensional cases. This motivates the search for
alternative methods and in section 4, I give a different method which achieves control to the
desired target with arbitrary accuracy and does not present any mathematical difficulties. In
section 5, I combine the main ideas of the two previous sections and present a third method
which allows us to control to a desired target with arbitrary accuracy and can be easily applied.
Most of the discussion in these sections refers to general systems on compact Lie groups.
In section 6, I give some remarks on the results presented in the paper and return to their
application to quantum-mechanical systems.

2. The Lie algebra rank condition of geometric control theory

Consider a control system of the form

ẋ = f (x, u), (2)

where x is the state varying on a compact Lie group and u the control. The system is said to be
right invariant if, denoting by x(t, u, s) the solution to (2) corresponding to initial condition
s and control function u, we have

x(t, u, s) = x(t, u, 1) ◦ s, (3)

where 1 denotes the identity of the group and ◦ is the multiplication in the group. To be
concrete, we shall consider the case of a matrix group G where the group operation is the
standard matrix multiplication, with particular attention to subgroups of the Lie group of n×n

unitary matrices U(n), given the potential application to quantum systems. In particular, we
shall consider systems of the form

Ẋ = A(u)X, X(0) = 1, (4)
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where 1 is the identity matrix and the matrix A(u) is in the Lie algebra associated with
the Lie group G for every value of the control u. This equation models many systems
of interest. In particular (cf (1)), closed (i.e., not interacting with the environment) finite-
dimensional quantum systems which are coherently controlled (i.e., through a variation of
their Hamiltonian) are modeled this way. In this case, equation (4) is the Schrödinger equation.
We refer to [9] and references therein for several examples and introductory notions on Lie
groups and Lie algebras in the context of quantum control.

If we restrict ourselves to piecewise constant controls, the problem of control for systems
(4) can be described as follows. Assume we have a set of linearly independent matrices

F := {A1, . . . , Am}, (5)

each corresponding to a certain value of the control u in (4). To each of them, there corresponds
a semigroup

Sj := {eAj t |t � 0}, j = 1, . . . , m. (6)

The problem of control to a matrix Xf is to choose N elements Xl, l = 1, . . . , N ∈ Sj , for some
j = 1, . . . , m, such that

∏N
l=1 Xl = Xf . If such elements exist Xf is said to be reachable.

The question of describing the set of reachable matrices is a standard one in geometric control
theory. The result in theorem 1, known as the Lie algebra rank condition, is classical [14] and
provides the answer for compact Lie groups.

Let L be the Lie algebra generated by the elements in F defined as the smallest Lie algebra
containing F and denote by eL the connected Lie group associated with L. We shall call L
the dynamical Lie algebra associated with the system.

Theorem 1. [14] Consider the Lie group eL and assume it is compact. Then, the set of
reachable values for X in (4) is equal to eL.

This result has been elaborated upon in several papers and applied to quantum-mechanical
systems (cf [1, 9, 13]). In particular, in the case of (closed) quantum-mechanical systems L
is a subalgebra of the unitary Lie algebra u(n) (the Lie algebra of n × n skew-Hermitian
matrices) and, as such, can be written as the direct sum of an Abelian subalgebra and a
semisimple subalgebra to which there corresponds a compact Lie group. That is, modulo an
Abelian subgroup which commutes with all of eL, eL is compact (cf [8, 23]). In particular,
eL is compact if L = u(n) or L = su(n) (n × n skew-Hermitian matrices with trace zero)
in which case, the system is called controllable and eL is the group of unitary matrices U(n)

or special unitary matrices SU(n), i.e., n × n unitary matrices with determinant equal to one,
respectively. A classical result of Lie theory (see, e.g., [29, theorem 2.15]) says that every
representation of a compact Lie group is unitary. Therefore, if we assume that we consider a
Lie group of matrices (as we do) eL will always be a subgroup of U(n) and L a subalgebra of
u(n).

The original proof of theorem 1 given in [14] is not constructive, i.e., in our setting, it
does not show how to alternate elements in the semigroups Sj in (6) to obtain a given target
Xf ∈ eL. We show how to obtain this in two ways in the following two sections. The
main ideas are then combined in a third method in section 5. The first method, described in
section 3, achieves exact control if the subgroups corresponding to the semigroups in (6), i.e.,

S̃j := {eAj t |t ∈ RI }, j = 1, . . . , m, (7)

are closed, i.e., the function t → eAj t is periodic. Otherwise it obtains control with arbitrary
accuracy as it follows from proposition 3.2 and remark 3.3 below. These proposition and
remark allow us to replace an exponential of the form eAt with t < 0 with an exponential of
the form eAt with t > 0 which approximates it with arbitrary accuracy. These results will be
utilized for the following two methods as well.
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3. Method 1: exact constructive controllability

The method I am going to describe is suggested by the proof of the Lie algebra rank condition,
theorem 1, given in [9] and the result on uniform finite generation of compact Lie groups
given in [6]. Let Xf ∈ eL be the target state. We want to obtain Xf as a product of elements in
(6), if not exactly, at least, with arbitrary accuracy. We are first going to relax the problem by
allowing the use of elements in the subgroups (7) rather than only elements of the semigroups
(6). We shall show later how to overcome this problem (see proposition 3.2 and remark 3.3).

Since eL is compact the exponential map is surjective, that is, there exists a matrix A ∈ L
such that eA = Xf , for every Xf.1 This also implies that, given any neighborhood K of the
identity in eL, we can choose an integer M sufficiently large such that e

A
M = X

1
M

f ∈ K .
Assume first that F in (5) is a basis of L, that is, no Lie bracket is necessary to obtain a
basis of L. This implies that, by varying t1, . . . , tm in a neighborhood of the origin in RI m,
K := {X = eAmtm eAm−1tm−1 · · · eA1t1 | t1, . . . , tm ∈ RI }, gives a neighborhood of the identity in
eL and, in particular, it contains e

A
M for sufficiently large M. That is, we can find real values

t̄1, . . . , t̄m such that

e
A
M = eAmt̄meAm−1 t̄m−1 · · · eA1 t̄1 . (8)

Therefore, by using elements from the subgroups (7) we can obtain e
A
M . Now assume F is

not a basis of L. Since F := {A1, . . . , Am} generates all of L, there exist two indices k and
l, 1 � k, l � m, such that the commutator [Al,Ak] is linearly independent of {A1, . . . , Am}.
This implies that there exists a value t ∈ RI such that F := eAltAk e−Alt is also linearly
independent of {A1, . . . , Am}. To see this, assume it is not true and write eAlt Ak e−Alt as

eAlt Ak e−Alt =
m∑

j=1

aj (t) Aj , (9)

for every t. Taking the derivative with respect to t at t = 0, gives [Al,Ak] = ∑m
j=1 ȧj (0)Aj ,

which contradicts the fact that [Al,Ak] is linearly independent of {A1, . . . , Am}. Let t̄ be such
that

F := eAl t̄ Ak e−Al t̄ . (10)

We can add F to {A1, . . . , Am} and have a linearly independent set. Moreover, we can express
every exponential eFt in terms of exponentials of Al and Ak since eF t = eAl t̄ eAkt e−Al t̄ . Define
Am+1 := F . If {A1, . . . , Am,Am+1} is a basis of L then we can proceed as above and obtain a
neighborhood of the identity in eL by varying {t1, . . . , tm+1} ∈ RI m+1. Such a neighborhood is
given by K := {∏m+1

j=1 eAj tj |t1, . . . , tm+1 ∈ : RI }. If this is not the case, then we observe that
{A1, . . . , Am+1} is still a set of generators for L and, as above, there must exist two elements
Ak and Al in {A1, . . . , Am+1}, such that [Ak,Al] is linearly independent of {A1, . . . , Am+1}
and therefore for some t̄ , Am+2 := eAl t̄ Ak e−Al t̄ is linearly independent of {A1, . . . , Am+1}.
The exponential eAm+2t again can be expressed in terms of exponentials of A1, . . . , Am+1 and
therefore in terms of exponentials of A1, . . . , Am. Proceeding this way, one finds dim(L)−m

new matrices, {Am+1, Am+2, . . . , Adim(L)} which together with {A1, . . . , Am} give a basis of
L. Moreover, the exponentials of {Am+1, Am+2, . . . , Adim(L)} can be expressed as products of
exponentials of the elements in F . By taking

∏dim(L)
j=1 eAj tj with tj ∈ RI , j = 1, . . . , dim(L),

we obtain all the elements in a neighborhood of the identity and in particular e
A
M . Repeating

the sequence M times we obtain eA.

1 See, e.g., [18, 21] for generalizations of this result. See also [12, theorem 6.4.15] for the theorem of existence of
the logarithm of a matrix.
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Remark 3.1. In the practical application of this method one has to solve the set of n2

(complex) nonlinear algebraic equations (8) and find the coefficients t̄1, . . . , t̄m which exist
for M sufficiently large. In practice, one begins with a low value of M and increases it until a
solution can be found. For large dimensional problems the solution typically has to be found
numerically and the number of unknown parameters grows with the dimension of the Lie
algebra (as n2 in the case of L = u(n)). Several numerical methods for solutions of nonlinear
algebraic equations (cf e.g., [10]) exist. For low-dimensional systems it may be possible to
find the solution by hand as described in example 3.3. It is this difficulty in solving equation
(8) which motivates the alternative methods described in the following two sections. It must be
remarked however that there is some flexibility in the choice of the matrices Am+1, . . . , Adim(L),
because of the choice of the pair Ak,Al and of the times t̄ (cf (10)). We can use this flexibility to
make these matrices as simple as possible (e.g., block diagonal, sparse, etc) so that calculating
the exponential is easier. Another type of flexibility, which may be used in calculations, is the
fact that the way exponentials are arranged in (15) is arbitrary. Any different order will give a
neighborhood of the identity.

3.1. Dealing with negative times

In the expression of e
A
M and therefore in the expression of eA, there will be some exponentials

with negative t, i.e., some elements in the subgroups (7) which are (possibly) not in the
semigroups (6). There are ways to minimize the number of these elements in the full product,
for example by placing together matrices which come from similarity transformations with
the same matrix so as to have cancelations of the type eAj t1 e−Aj t2 = eAj (t1−t2). Also, in many
cases, the orbits {eAj t |t ∈ RI } are periodic (closed), which allows us to assume all the t̄j ’s
positive, without loss of generality. In other cases, we can have a situation where, for every
matrix A ∈ F , the exponential of the negative e−At is available although −A is not included
in the original set F . Moreover sometimes, in the quantum control context, we can easily
produce a unitary matrix U and its inverse U †, such that UAU † = −A. If we are not in one
of these cases, we can use the following fact.

Proposition 3.2. Let e−B|t | be an element of a compact Lie group eL. For every ε > 0 there
exists t̄ > 0 such that2

‖e−B|t | − eBt̄‖ < ε. (11)

Proof. Consider e−B|t | and the sequence enB|t |, which, by compactness of eL, has a converging
subsequence en(k)B|t |. We have limk→∞ e(n(k+1)−n(k)−1)B|t | = e−B|t |. Therefore there is k̄ such
that ‖e(n(k̄+1)−n(k̄)−1)B|t |−e−B|t |‖ < ε, and the proposition holds with t̄ = (n(k̄+1)−n(k̄)−1)|t |.

�

Remark 3.3. The proof given above follows the one given in [14]. A different, more
concrete, proof can be given recalling that eL, being a compact Lie group of matrices, is a
subgroup of U(n) (cf [29, theorem 2.15]). From properties of the Frobenius norm, we have

‖eBt̄ − e−B|t |‖ =
√

2

√√√√n −
n∑

j=1

cos(ωj (t̄ + |t |)), (12)

2 Whenever we do specific computations involving norms of matrices we use the Frobenius norm ‖A‖ :=√
Trace(AA†).
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where iωj , j = 1, . . . , n are the eigenvalues (possibly repeated) of B. If we can choose t̄ > 0
so that

[1 − cos(ωj (t̄ + |t |))] <
ε2

2n
, (13)

for every j = 1, . . . , n, then (11) is certainly satisfied. If g := arccos
(
1 − ε2

2n

)
, then, we

satisfy condition (13) if we are able to find t̄ and integers mj, j = 1, . . . , n, such that

|ωj(t̄ + |t |) − 2πmj | < g. (14)

However, according to Dirichlet’s approximation theorem (see, e.g., [2]), given a natural
number N and n reals α1, . . . , αn, we can find positive integers a, b1, . . . , bn, with 1 � a � Nn

so that |αja − bj | < 1
N

, for every j = 1, . . . , n. This result can be applied to satisfy condition

(14) identifying αj with ωj |t |
2π

, choosing 1
N

<
g

2π
, choosing mj = bj , and t̄ so that t̄+|t |

|t | = a.
Notice that since a � 1, t̄ � 0 as desired. For the problem to find a and bj’s, there are several
algorithms in the literature (cf [15, 16]). Note, however, that we are only interested in a, which
determines t̄ , and since a is bounded from above by Nn, it can be always found, in principle,
by exhaustive search.

3.2. Summary of the method and remarks

We can summarize the given method as follows:

(i) Given F := {A1, . . . , Am} find, via similarity transformations, dimL− m more matrices
{Am+1, . . . , Adim(L)} so that {A1, . . . , Adim (L)} is a basis for L.

(ii) Take the (principal) logarithm of Xf, A, so that eA = Xf .
(iii) Find M (sufficiently large) and t1, . . . , tdim(L), so that

e
A
M =

dim(L)∏
j=1

eAj tj . (15)

Then Xf = eA = (∏dim(L)
j=1 eAj tj

)M
.

(iv) Replace the exponentials of the matrices Am+1, . . . , Adim(L) with expressions involving
the exponentials of {A1, . . . , Am} as obtained from step (i).

(v) Replace every exponential eBt, (B ∈ F) involving negative t with its approximation
involving positive t. This can be obtained with arbitrary accuracy according to proposition
3.2 and remark 3.3.

We have already discussed in remark 1 the problem of solving equation (15). We give
few more remarks on this method.

Remark 3.4. The last step of the method can be achieved exactly (i.e., without involving
an approximation) if the orbits associated with the given matrices F := {A1, . . . , Am} are
periodic. In this respect, note that, if this is the case, all the other matrices obtained by the
method also have associated periodic orbits. In fact their eigenvalues are the same as those of
the original matrices. Therefore, for a given matrix B, and negative t̄ , we can choose a positive
t, such that eBt = eBt̄ . This suggests to use the flexibility in the choice of the initial matrices
F in (5) in order to be in this situation, if possible. The only requirement on F is in fact to
be a set of linearly independent generators of L. The procedure implies the following simple
corollary.
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Corollary 3.5. If F is a set of generator matrices for a Lie algebra L then there exists a
basis of L whose matrices have the same spectrum as the elements of F .

Remark 3.6. Step (v) of the procedure introduces an error in the approximation of e
A
M which

then is (possibly) amplified by repeating this approximation M times. In order to control
the error one proceeds as follows. Assume δ is given which is the maximum tolerable error
in the procedure. Moreover, step (3) of the procedure has given a value for M and there
are r exponentials in the expression of e

A
M with negative t. The choice of ε < δ

rM
in (11)

and (13) guarantees that the final error is < δ. In order to see this let us denote by e
A
M appr

the approximation of e
A
M where the exponentials with negative times are replaced with their

approximations with positive times according to the above procedure. We approximate eA

with
[
e

A
M appr

]M
. Using formula (A.5), we have∥∥eA − [e A

M appr
]M∥∥ � M

∥∥e
A
M − e

A
M appr

∥∥. (16)

Write e
A
M :=∏r

j=1 PjNj , where the Ps (Ns) denote exponentials with nonnegative (negative)

times, and e
A
M appr := ∏r

j=1 Pj Ñj , where Ñj is the approximation of Nj. A straightforward
induction argument3 shows that

∥∥e
A
M − e

A
M appr

∥∥ =
∥∥∥∥∥∥

r∏
j=1

PjNj −
r∏

j=1

Pj Ñj

∥∥∥∥∥∥ �
r∑

j=1

∥∥Nj − Ñj

∥∥. (17)

Therefore by choosing ε < δ
rM

for all js we have
∥∥Nj − Ñj

∥∥ < δ
rM

, from (17)∥∥e
A
M − e

A
M appr

∥∥ < δ
M

and from (16)
∥∥eA − [e A

M appr
]M∥∥ < δ.

Remark 3.7. [6] It is interesting to analyze the problem of determining the number of
factors involved in the factorization of eA (and therefore M in (15)) and the related problem of
determining the total time of control. This is a complicated problem in general whose solution
depends on the specific situation at hand, i.e., set of available matrices F in (5) and the final
condition Xf. To illustrate some of the issues involved, let us first consider the simplified case
where all the matrices in F have associated periodic orbits in (6). Therefore we first neglect
the problem of negative times. To simplify the discussion, we shall also assume that the period
is the same for all matrices and we shall denote it by T. The number of exponentials involved
in obtaining a neighborhood of the identity in eL depends on how the matrices in F combine
in Lie brackets to give a basis of L. One may for example be able to generate dimL− m new
linearly independent matrices with only one Lie bracket among the elements in F or need
repeated Lie bracket, in which case, the number of factors grows. In the worst case, we only
produce one new linearly independent matrix at every step. In this case, the total number of
exponentials at step j is [6] dj = 2dj−1 + dj−2, having defined recursively the numbers dj as

d0 = 1, d1 = 3, dj = 2dj−1 + dj−2, (18)

3 It is clear that
∥∥P1N1 − P1Ñ1

∥∥ = ∥∥N1 − Ñ1
∥∥ from properties of the Frobenius norm since P1 is unitary. If r > 1,

we have ∥∥∥∥∥∥
⎛
⎝r−1∏

j=1

Pj Ñj

⎞
⎠PrÑr −

⎛
⎝r−1∏

j=1

PjNj

⎞
⎠PrNr +

⎛
⎝r−1∏

j=1

PjNj

⎞
⎠PrÑr −

⎛
⎝r−1∏

j=1

PjNj

⎞
⎠PrÑr

∥∥∥∥∥∥

�
∥∥∥∥∥∥

r−1∏
j=1

Pj Ñj −
r−1∏
j=1

PjNj

∥∥∥∥∥∥ +
∥∥Nr − Ñr

∥∥ �
r∑

j=1

∥∥Nj − Ñj

∥∥ ,

where we used the fact that all the matrices are unitary and, in the last step, the inductive assumption.
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and the number of exponentials required is md0 +
∑dimL−m

j=1 dj .
4 The sum of the times needed

to obtain e
A
M also grows with the number of steps (Lie brackets) needed to generate a basis

of L. Let us now assume for simplicity that only one Lie bracket (i.e., no repeated Lie
bracket) is needed in order to obtain a basis of L and therefore we can generate a basis of L
using elements in F and similarity transformations of the form (10) only (without iterating
the procedure further). The interval of time used in the exponential of every element of F is
at most T while for every element of the form F in (10) is at most 2T (T to implement the
similarity transformation and at most T in the exponential of Ak in (10)). Therefore in a time at
most mT +2(dimL−m)T we can ‘cover’ a neighborhood K of the identity in eL and therefore
implement e

A
M for M sufficiently large. How large this M has to be depends on the ‘size’ of

the neighborhood K. However, to the best of the author’s knowledge, it is not known how to
determine M in general. If it was, we could give a bound on the order of generation of a
compact Lie group5. The problem of determining the order of generation has been the subject
of much research but results are known only for special cases (e.g., SU(2) [19]). Finally, if
we do not assume periodic orbits, the total time of implementation is typically much larger
because we might have to take t̄ quite large in (13) in order to satisfy the bound on the error.

3.3. Example

We illustrate this method with a simple example of the quantum control of a two level system,
i.e., a control problem on SU(2), which is compact. Recall the definition of the Pauli matrices

σx :=
(

0 1
1 0

)
, σy :=

(
0 i
−i 0

)
, σz :=

(
1 0
0 −1

)
. (19)

Let F := {A1, A2}, with A1 := iσz and A2 := i(σx + σy). Calculate eA1 t̄A2 e−A1 t̄ which for
t̄ = − 3

8π gives A3 = −i
√

2σy , which is linearly independent of A1 and A2, and, along with
them, forms a basis of su(2). A straightforward calculation gives

eA1t1 =
(

eit1 0
0 e−it1

)
, eA2t2 =

(
cos(

√
2t2) ei 3π

4 sin(
√

2t2)

−e−i 3π
4 sin(

√
2t2) cos(

√
2t2)

)
, (20)

eA3t3 =
(

cos(
√

2t3) sin(
√

2t3)

− sin(
√

2t3) cos(
√

2t3)

)
,

and the set

S1,2,3 := {eA1t1 eA2t2 eA3t3 |t1, t2, t3 ∈ RI
}
, (21)

4 It must be remarked also that due to a result in [11, lemma IV.5.17] in general dimL = dim eL exponentials of
elements of F are sufficient to obtain a neighborhood of the identity in eL. The author would like to thank R Zeier
for pointing out this reference.
5 Given a set of generators F of a Lie algebra L, the order of generation is the number of factors, in the products
of alternate exponentials of elements of F , needed in order to express every element of the Lie group eL. Assume
that with a certain number d of exponentials we can obtain all the elements in a neighborhood K of the identity.

Therefore for every Xf we can find M so that X
1
M
f ∈ K . Assume now that we were able to associate with each Xf the

minimum M = M(Xf ) for which this is possible. Such M = M(Xf ) has to be uniformly bounded over Xf because
if it was unbounded this would contradict the known result about uniform finite generation of compact Lie group (cf
[6]) (essentially a consequence of the compactness of eL). If Mmax is this bound, Mmaxd is a bound on the order of
generation.
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covers a neighborhood of the identity in SU(2). Assume now the target state Xf is

Xf :=
(

1√
2

i 1√
2

i 1√
2

1√
2

)
. (22)

We first try to see if Xf is in the set S1,2,3 in (21). Therefore we must be able to choose
t1 and t3 so that P := e−A1t1 Xf e−A3t3 has the form eA2t2 . This means in particular that
the difference between the phases of the P1,2 element and P1,1 elements in P is 3π

4 . As a
straightforward calculation shows, P1,2P

∗
1,1 = i

2 independently of the choice of t1 and t3.

Therefore Xf /∈ S1,2,3. We replace Xf with X
1
2
f . The same calculation shows that, for every

t1, P1,2P
∗
1,1 =

√
2

2 sin(2
√

2t3) + i
√

2
2 and, therefore, the choice t3 := 3π

4
√

2
achieves the desired

phase difference. Then, we can choose t1 to impose that the element P1,1 has phase zero (it is
real). This leads to t1 = 9π

8 . With these choices, we have

e−A1t1X
1
2
f e−A3t3 =

(
1√
2

1√
2

ei 3π
4

− 1√
2

e−i 3π
4

1√
2

)
. (23)

Comparing this with eA2t2 in (20) leads to the choice t2 = π

4
√

2
. With these choices

Xf = (eA1t1 eA2t2 eA3t3)2.
In terms of the original available matrices, A1 and A2, we have

Xf =
(

eA1t1 eA2t2 e−A1
3π
8 eA2t3 eA1

3π
8

)2
, (24)

where t1, t2, t3 are those found above. The presence of the negative ‘time’ − 3π
8 in the third

exponential does not pose any problems since the one-dimensional subgroup associated with
A1 (as well as any other matrix in su(2)) is periodic.

A similar treatment shows that had we chosen to work with the set

S1,3,2 := {eA1t1 eA3t3 eA2t2 |t1, t2, t3 ∈ RI
}
, (25)

we would have achieved Xf with just three exponentials. This shows that the order in which
the exponentials are chosen may be important.

It must be said that for the special case of SU(2) there are many more techniques which
may be preferable to that advocated here. For example, since one has available both iσz and
iσy one could have applied a simple Euler decomposition. It is also possible, for general target
matrices, to find the factorization with the minimum number of factors [5]. Our goal here
was to illustrate the method on a simple, easily computable, case. We remark that even for
large dimensional Lie groups, one can combine these ideas with Lie group decompositions
for which there exists a large set of tools [9].

4. Method 2: constructive controllability with arbitrarily small error

In this and the following section, we illustrate methods which do not require the solution of
nonlinear algebraic equations, such as (8), but can be implemented with simple linear algebraic
techniques. The algorithms achieve control to the target with arbitrary small error.

Reconsider the available set of matrices F in (5). As before, we relax the requirement to
use only elements in the semigroups (6) and use elements in the subgroups (7). We can then
replace elements in the subgroups with elements in the semigroups as done in the previous
section. We start with a definition.

9
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Definition 4.1. A matrix H is said to be simulable with the set F if there exist r continuous,
strictly increasing, functions fj, j = 1, . . . , r , with fj (0) = 0, defined in an interval [0, ε),
such that

eHx =
r∏

j=1

eLj fj (x) + O(x1+δ), (26)

for some matrices Lj ∈ F
⋃−F and6 a δ > 0.

Remark 4.2. This definition is reminiscent of the problem of Hamiltonian quantum
simulation in quantum computation (cf [3, 22] and references therein). The problem of
Hamiltonian simulation is the problem of implementing (or approximating) an evolution eHx,
for every x, with a quantum circuit, i.e., with a sequence of unitary transformations. According
to formula (26), if an Hamiltonian is simulable, we can approximate eHx with a sequence of
unitary evolutions obtained by evolving according to Lj’s. This approximation improves with
x small at a rate better than linear in x, because δ > 0.

Lemma 4.3. Assume (26) holds. Then

lim
n→∞

⎛
⎝ r∏

j=1

eLj fj (
1
n
)

⎞
⎠

n

= eH (27)

Proof. If (26) holds then

lim
n→∞

⎛
⎝ r∏

j=1

eLj fj (
1
n
)

⎞
⎠

n

= lim
n→∞

[
eH 1

n − O

(
1

n1+δ

)]n

. (28)

However, we have this standard limit in matrix analysis (see [12, section 6.5])

lim
n→∞

[
eH 1

n − O

(
1

n1+δ

)]n

= eH , (29)

which proves the lemma.
�

From the point of view of constructive controllability, this lemma says that, for each
simulable H, we can put together a product of exponentials of elements in F

⋃−F which,
repeated a large enough number of times, approximates, with arbitrary accuracy, eH.

Theorem 2. Every H in the dynamical Lie algebra L is simulable.

Remark 4.4. This theorem along with lemma 4.3 and proposition 3.2 give an alternative
proof of a slightly weaker form of the Lie algebra rank condition of theorem 1. Since eL is
compact, for every Xf in eL, there exists H ∈ L such that eH = Xf . Theorem 2 and lemma 4.3
say that we can find a sequence of reachable points converging to Xf for every Xf. Therefore
the set of reachable states is dense in eL.

Elaborating on the proof of theorem 2, we will also show how to choose the elements
Lj ∈ F

⋃−F and the functions fj in (26) so as to make the controllability result constructive.
We shall discuss this after the proof.

6 −F denotes the set {−A1, −A2, . . . , −Am}.

10
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Proof. The proof is similar to that given in [4] in the context of quantum walks dynamics. In
particular, we will show that the set of simulable elements is a Lie algebra containing F and
this will be sufficient since L is the smallest Lie algebra containing F , by definition.

First of all, it is clear that every element in F is simulable, since equation (26) holds with
r = 1 and O ≡ 0. Therefore the set of simulable matrices contains F .

Moreover if H satisfies equation (26), then we have

e−Hx =
1∏

j=r

e−Lj fj (x) −
1∏

j=r

e−Lj fj (x)O(x1+δ) e−Hx, (30)

and by expanding the exponentials it follows that the last term is also O(x1+δ). Therefore −H

is also simulable. Moreover, for a � 0, (26) holds for aH with fj (x) replaced by fj (ax) and
O(x1+δ) replaced by O(a1+δx1+δ) = O(x1+δ). If (26) holds for H1 and H2, i.e., we have

eHix =
ri∏

j=1

eLi
j f

i
j (x) + Oi(x

1+δi ), i = 1, 2, (31)

combining this with

e(H1+H2)x + O(x2) = eH1xeH2x, (32)

gives7

e(H1+H2)x =
r2∏

j=1

eL2
j f

2
j (x)

r2∏
j=1

eL1
j f

1
j (x) + O(x1+δ), (33)

with δ = min{δ1, δ2, 1}. Therefore, if H1 and H2 are simulable, so is H1 +H2. These arguments
show that the set of simulable matrices is a vector space.

To show that it is also a Lie algebra, we have to show that if H1 and H2 are both simulable
so is [H1,H2]. In order to see this, write (31) in the form

eH1t = T1(t) + O1(t
1+δ1), eH2t = T2(t) + O2(t

1+δ1), (34)

i.e., by replacing the products with the functions T1 and T2. This also gives (cf (30))

e−H1t = T −1
1 (t) − T −1

1 (t)O1(t
1+δ1) e−H1t ,

e−H2t = T −1
2 (t) − T −1

2 (t)O2(t
1+δ2) e−H2t .

(35)

We use the exponential formula (see, e.g., [12, section 6.5])

e[H1,H2]t2
+ O(t3) = e−H1t e−H2t eH1t eH2t . (36)

Using (34) and (35) in (36), we have

e[H1,H2]t2
+ O(t3) = (

T −1
1 − T −1

1 O1 e−H1t
) (

T −1
2 − T −1

2 O2 e−H2t
)

× (T1 + O1) (T2 + O2) .
(37)

Expanding the right-hand side, omitting terms that are clearly O(tα), α > 2, since they contain
the product of two O functions, we have

e[H1,H2]t2
+ O(t3) = T −1

1 T −1
2 T1T2 + T −1

1 T −1
2 T1O2 + T −1

1 T −1
2 O1T2

− T −1
1 T −1

2 O2 e−H2t T1T2 + T −1
1 O1 e−H1t T −1

2 T1T2 + O(tα). (38)

7 Here and elsewhere, we use the notation O for a generic O-function and we use indices like in O1 and O2 when we
want to highlight a particular O-function.
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Expanding in McLaurin series the functions multiplying O1 and O2, we see that the terms
corresponding to the first terms of the expansion cancel, leaving only terms of the form O(tβ

′
)

with β ′ > 2. In conclusion, we have

e[H1,H2]t2 = T −1
1 (t)T −1

2 (t)T1(t)T2(t) + O(tβ), β > 2, (39)

and by setting t = √
x, we obtain

e[H1,H2]x = T −1
1 (

√
x)T −1

2 (
√

x)T1(
√

x)T2(
√

x) + O(x
β

2 ), β > 0, (40)

which shows that [H1,H2] is simulable as well, and completes the proof.
�

In order to use lemma 4.3 and theorem 2 for control, we need to show how, given H, one
can find the matrices Lj in F

⋃−F so that (26) holds. We first find a basis of L by taking
repeated Lie brackets of elements in F . More precisely, set

D0 := F, (41)

a linearly independent set of elements of ‘depth’ 0 (no Lie bracket necessary), and let

D̃1 := [D0,F], (42)

a set of elements of depth 1, which are Lie brackets of elements of depth 0 with elements of
F . From the set D̃1 we extract a, possibly smaller, set D1 such that D0

⋃
D1 is a maximal

linearly independent set in D0
⋃

D̃1. We then calculate a set of Lie brackets of depth 2

D̃2 := [D1,F], (43)

and extract a subset D2 ⊆ D̃2 so that D0
⋃

D1
⋃

D2 is a maximal linearly independent set
in D0

⋃
D1
⋃

D̃2. Proceeding this way, we obtain a set
⋃r

k=0 Dk , which spans all of L. As
a consequence of L being finite dimensional, the procedure will end at some finite depth r
after which we cannot find any new linearly independent matrix. Consider now the basis of L
which we have found with this procedure {A1, . . . , AdimL}. With each Aj is associated a depth
equal to 0, 1, . . . , r . We decompose H as

H =
dimL∑
k=1

αkAk, (44)

and write, following the theorem,

eHx =
dimL∏
k=1

eαkAkx + O(x1+δ). (45)

Then we rewrite each of eαkHkx according to the procedure of the theorem. This is
straightforward for depth equal to 0 and it has to be done iteratively for Lie brackets of
higher depth. Summarizing the method is as follows:

(1) Find a basis for L by repeated Lie brackets of elements of F .
(2) Expand H along this basis as in (44). Then one has (45).
(3) For each factor approximate the exponential with a product of exponentials involving

elements in F ∪−F according to the proof of theorem 2. In particular, the rules to obtain
the approximating products are as follows.

(a) If A ∈ F ∪ −F , then the associated product is T (x) = eAx (only one factor).
(b) If T (x) is the product associated with A, then T −1(x) is the product associated with

−A.

12
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(c) If T (x) is the product associated with A, then T (ax) is the product associated with
aA for any a � 0.

(d) If TA(x) and TB(x) are the products associated with A and B respectively, then
T −1

A (
√

x)T −1
B (

√
x)TA(

√
x)TB(

√
x) is the product associated with [A,B].

(4) Combine all the products in a unique product, approximating eHx, which contains only
exponentials of elements in F and −F . By repeating this product for x = 1

n
a large

number of times n we obtain a matrix arbitrarily close to eH.
(5) Replace every exponential eAt with A ∈ F and t < 0 in the approximating product with

an approximating exponential of the form eAt̄ with t̄ > 0, according to proposition 3.2
and remark 3.3.

4.1. Example

We illustrate the previous procedure with an example taken from the theory of electrical
networks. In particular, we consider the LC switching network in [32] whose dynamical
equation is given by

ẋ =

⎛
⎜⎜⎝

0 −ν 0 0
ν 0 0 0
0 0 0 −β

0 0 β 0

⎞
⎟⎟⎠ x +

⎛
⎜⎜⎝

0 0 0 γ

0 0 δ 0
0 −δ 0 0

−γ 0 0 0

⎞
⎟⎟⎠ xu(t), (46)

where ν, β, γ and δ are positive parameters depending on the inductances and capacitances of
the electrical network. The vector x represents voltages and currents in the network and u is a
switching control variable which takes values in {0, 1}. To make the discussion concrete, we
choose the parameters ν = 1, β = 3, γ = 1 and δ = 2, so that the set of available matrices is8

F :=

⎧⎪⎪⎨
⎪⎪⎩A1 :=

⎛
⎜⎜⎝

0 −1 0 1
1 0 2 0
0 −2 0 −3

−1 0 3 0

⎞
⎟⎟⎠ , A2 :=

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −3
0 0 3 0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ . (47)

The solution to (46) is

x(t) = X(t)x(0), (48)

where X = X(t) is the solution of the matrix equation

Ẋ = A(u)X, X(0) = 1, A(1) = A1, A(0) = A2. (49)

Let us use the notation Ejk for the skew-symmetric, 4 × 4, matrix which has all the entries
equal to zero except for the (jk)-th and (kj)-th (1 � j < k � 4) which are equal to 1 and −1,
respectively. Therefore, we can write

A1 = −E12 + E14 + 2E23 − 3E34, A2 = −E12 − 3E34. (50)

By calculating Lie brackets, at depth 1, we obtain

A3 := [A2, A1] = −5E12 + 7E24, (51)

at depth 2

A4 := [A3, A1] = 17E12 + 22E14 + 26E23 + 19E34, and A5 := [A3, A2] = 22E14 + 26E23.

(52)

8 Note that although the example is taken from the theory of electrical networks, it could also have been a model for
a four-level quantum system where the control switches between two Hamiltonians A1 and A2. A1 couples levels 1
and 2, and levels 3 and 4, 1 and 4, and, 2 and 3. A2 couples only levels 1 and 2 and levels 3 and 4.
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At depth 3, we obtain

A6 := [A4, A1] = 145E13 − 155E24. (53)

As the matrices {Al}, l = 1, . . . , 6, are linearly independent, they span all of so(4) and the
state X of system (49) varies on the Lie group SO(4), a compact Lie group.

Let us denote by Tj = Tj (x) the products approximating eAj x , j = 1, . . . , 6, and let us
assume that the control problem is to transfer the state [0, 0, 0, 1]T to [1, 0, 0, 0]T . We choose
to drive the transition matrix X in (49) to the value

eA5
π
44 =

⎛
⎜⎜⎝

0 0 0 1
0 cos( 13π

22 ) sin( 13π
22 ) 0

0 − sin( 13π
22 ) cos( 13π

22 ) 0
−1 0 0 0

⎞
⎟⎟⎠ . (54)

We proceed using the composition rules illustrated in (a)–(d) above. Since A5 = [A3, A2], we
have

T5(x) = T −1
3 (

√
x)T −1

2 (
√

x)T3(
√

x)T2(
√

x). (55)

Moreover, since A3 = [A2, A1] we have

T3(x) = T −1
2 (

√
x)T −1

1 (
√

x)T2(
√

x)T1(
√

x), (56)

and replacing into (55), we obtain

T5(x) =
T −1

1 ( 4
√

x)T −1
2 ( 4

√
x)T1(

4
√

x)T2(
4
√

x)T −1
2 (

√
x)T −1

2 ( 4
√

x)T −1
1 ( 4

√
x)T2(

4
√

x)T1(
4
√

x)T2(
√

x).

(57)

The product approximating eA5
π
44 t is T5(

π
44 t) which we can express in terms of exponentials

of A1 and A2 only by replacing T1 and T2 (and T −1
1 and T −1

2 ) according to the rules in (a) and
(b) above. In conclusion, we have

T5

( π

44
t
)

= e−A1(
π
44 t)

1
4 e−A2(

π
44 t)

1
4 eA1(

π
44 t)

1
4 eA2(

π
44 t)

1
4 e−A2(

π
44 t)

1
2 (58)

× e−A2(
π
44 t)

1
4 e−A1(

π
44 t)

1
4 eA2(

π
44 t)

1
4 eA1(

π
44 t)

1
4 eA2(

π
44 t)

1
2
.

I calculated the error

Err2(n) =
∥∥∥∥eA5

π
44 −

[
T5

(
π

44

1

n

)]n∥∥∥∥
2

= 8 − 2Tr

[(
T5

(
π

44

1

n

))n

eAT
5

π
44

]
, (59)

numerically, for various values of n and the behavior of this error as a function of the number
of iterations n is reported in table 1. The error goes to zero as predicted by the above treatment.
In a log–log scale the behavior is essentially linear.

To conclude the example we have to solve the problem that negative times are not allowed
(point (5) of the above procedure) and therefore we have to replace terms of the form e−A1x1

and e−A2x2 , with x1,2 > 0, in the expression of T5, with approximations of the form eA1x̃1

and eA2x̃2 , x̃1,2 > 0, respectively. In the case of A2, since {eA2t |t ∈ RI } is periodic we can
always find x̃1 > 0 such that e−A2x1 = eA2x̃1 for every x1 > 0, and we can simply replace the
exponential with x1 with the exponential with x̃1 in T5, without changing the error. For the
exponentials of A1, however, we need to find an approximation and this is always possible
with arbitrary accuracy according to proposition 3.2 and remark 3.3. We present a numerical
treatment of the example in the appendix.

14



J. Phys. A: Math. Theor. 42 (2009) 395301 D D’Alessandro

Table 1. Results of numerical experiments for the method in section 4.

Number of iterations, n Error, Err

2 3.1531
10 2.3964
20 2.0500
30 1.8604

100 1.3761
500 0.9089

1000 0.7599
5000 0.5022

50 000 0.2791
100 000 0.2341
500 000 0.1558

1 000 000 0.1301
5 000 000 0.0873

10 000 000 0.0733
50 000 000 0.0490

100 000 000 0.0411

5. Combination of the two methods

The main ideas in the two methods of control described in the previous sections can be
combined in a third method. The main idea of the method in section 3 was to use similarity
transformations to generate a basis of the dynamical Lie algebra L starting from the given
matrices in F in (5) (cf (10)). The main idea of the method in section 4 is the use of the limit
in lemma 4.3, once (26) holds. This allows us to control to the target, by repeating a given
sequence of available exponentials, with arbitrary accuracy. We can combine the two ideas.
We first use similarity transformations to obtain a basis of L, A1, . . . , AdimL. Then, if eH is
the target and H =∑dimL

j=1 αjAj , we use the fact that

eHx = e
∑dimL

j=1 αj Aj x =
dimL∏
j=1

eαj Aj x + O(x2), (60)

along with lemma 4.3 to approximate with arbitrary accuracy the target state, i.e.,

eH = lim
n→∞

⎡
⎣dimL∏

j=1

eαj Aj
1
n

⎤
⎦

n

. (61)

At the end of the process, if necessary, we replace all the exponentials of the form eAj t with
t < 0 with approximating exponentials of the form eAj t̄ with t̄ > 0.

I tested this method on the example in section 4.1. Given A1 and A2 in (47) we have

F := eA2
π
2 A1 e−A2

π
2 =

⎛
⎜⎜⎝

0 −1 0 2
1 0 1 0
0 −1 0 −3

−2 0 3 0

⎞
⎟⎟⎠ . (62)

Our target is eA5
π
44 in (54). We have the decomposition

A5 = 10A1 + 6F − 16A2, (63)
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Table 2. Results of numerical experiments for the method in section 5.

Number of iterations, n Error, Err

2 2.2819
10 0.4544
20 0.2267
50 0.0906

100 0.0453
1000 0.0045

10 000 0.0005

so that

eA5
π
44 x = R5(x) + O(x2), (64)

with

R5(x) := e10A1
π
44 x e6F π

44 x e−16A2
π
44 x. (65)

We have, according to lemma 4.3,

lim
n→∞

[
R5

(
1

n

)]n

= eA5
π
44 . (66)

Table 2 shows the results of numerical experiments with this scheme displaying the error Err
as a function of the number of iterations. Compared with table 1, it is clear that this method
converges much faster. Another advantage is that all the exponentials eAt with negative t are
for A = A2 (cf (65) and (62)) and the one-dimensional subgroup associated with A2 is closed.
Therefore no further approximation is needed.

For the method presented in this section a simple upper bound on the error can be obtained
by extending the bound for the Trotter’s formula given in [20].9 Let us assume that there is no
error due to the approximation of exponentials eAt with negative t. Therefore the only source
of error is the approximation of the exponential of a sum with the product of exponentials.
Recall that we have that eL is a subgroup of the unitary group.

Proposition 5.1. Let

H :=
k∑

j=1

Aj . (67)

Then ∥∥∥∥∥∥eH −
⎛
⎝ k∏

j=1

e
Aj

m

⎞
⎠

m∥∥∥∥∥∥ � 1

2m

k−1∑
j=1

∥∥∥∥∥
[

j∑
l=1

Al,Aj+1

]∥∥∥∥∥ . (68)

In the application of the method, we have some freedom in choosing the matrices Aj in
the expansion (67). The right-hand side of formula (68) shows that the error can be decreased
by choosing as few matrices as possible and as many commuting matrices as possible. The
error increases when we have to employ several non-commuting matrices and with the size of
the commutators.
9 This bound can also be used in the method of section 4, but in that case it will have to be complemented by more
estimates since the error is not only due to approximating the exponential of a sum with the product of exponentials.
Errors are introduced in the approximation of the exponential of (nested) Lie brackets.
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Proof. We prove that for every m,∥∥∥∥∥∥e
H
m −

k∏
j=1

e
Aj

m

∥∥∥∥∥∥ � 1

2m2

k−1∑
j=1

∥∥∥∥∥
[

j∑
l=1

Al,Aj+1

]∥∥∥∥∥ , (69)

and the result follows using formula (A.5). In fact, this result is already proven in [20, appendix
B]10 for the case k = 2 and it follows by induction for general k > 2. In particular, write∥∥∥∥∥∥e

A
m −

k∏
j=1

e
Aj

m

∥∥∥∥∥∥ =
∥∥∥∥∥∥e

A
m − e

∑k−1
l=1

Al
m e

Ak
m + e

∑k−1
l=1

Al
m e

Ak
m −

k∏
j=1

e
Aj

m

∥∥∥∥∥∥ (70)

�
∥∥e

A
m − e

∑k−1
l=1

Al
m e

Ak
m

∥∥ +

∥∥∥∥∥∥e
∑k−1

l=1
Al
m −

k−1∏
j=1

e
Aj

m

∥∥∥∥∥∥ ,

where we have used the property that the Frobenius norm does not change by multiplication
with a unitary matrix. By applying the inductive assumption to both terms of the last two terms
above (in the first case the decomposition A = (

∑k−1
l=1 Al) + Ak is used) we obtain formula

(69).
�

6. Concluding remarks

The methods described in this paper can be seen as a constructive proof of the Lie algebra rank
condition of theorem 1. They allow us to control any finite-dimensional right invariant system
on a compact Lie group such as quantum systems subject to coherent control. It is expected
that the ideas described above can be extended and improved by using more sophisticated
exponential formulae [20] and by exploiting in various cases the inherent flexibility of the
methods proposed. These, at every step, involve choices that when tailored to the problem at
hand may significantly improve the performance of the control algorithms. It is also expected
that it will be possible to obtain more estimates of the convergence rate and of the errors in
various cases (as in proposition 5.1), by combining estimates known for exponential formulae.

Many techniques have been proposed for the coherent control of quantum-mechanical
systems of the form (1) which apply to models with various assumptions. These techniques
include Lie group decompositions (see, e.g., [7, 17, 26]), Lyapunov control (see, e.g.,
[30, 31]), optimal control (see, e.g., [28]) and several techniques of molecular control
[24, 27]. These techniques assume additional structure in equation (1), often suggested
by physical considerations, and/or require numerical solutions of differential equations, two
points boundary value problems, numerical tuning of specific parameters, etc. One of the
main motivations of these approaches was that the controllability result of theorem 1 is not
constructive. In this paper, we have removed this obstacle and made this proof constructive so
giving algorithms that can be applied always. In particular, the algorithms of sections 4 and 5
do not present any special difficulties from a mathematical point of view as they involve very
well studied linear algebra operations such as calculating the exponential and the logarithm
of a matrix and expanding a vector along a given basis. While I have not considered the
problems which would arise in specific physical implementations, the strength of the proposed
approach is in its generality and on the fact that, from a purely mathematical point of view, it
always offers an alternative for any system of the form (1). One can also combine the methods

10 See in particular the proof of theorem 5, there noticing that � is zero in our case.
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presented here with the other approaches in the literature above recalled. For example, using
Lie group decompositions, one can decompose the target matrix Xf into the product of several
factors for which the application of the method is particularly simple and/or efficient.

In the future, it will be of interest to improve the algorithms of the last two sections by
minimizing the number of switches in the control laws. This mainly depends on the number of
iterations. In this respect, the algorithm of section 5 is expected to be faster than the algorithm
in section 4, as a consequence of the exponent 2, in O(x2) in (60) as opposed to the exponent
1+δ (with δ typically < 1) in (26). If our main concern is however the time of implementation,
the effect of an increasing number of iterations n in (28) is balanced by the 1

n
exponents inside

the limit. The main problem, in terms of time, is the approximation of matrices of the form eAt

with t < 0 with matrices of the form eAt, with t > 0, in the case of non-closed subgroups (7).
In fact, we might have to ‘travel’ for a long time inside the Lie group eL before we get close
enough to the original eAt. In special situations, however, it might be possible to transform A

into −A via available similarity transformations, or reduce ourselves to a smaller dimensional
Lie subgroup where the problem is more easily tractable. Nevertheless, it is always possible
to find such an approximation and therefore the control. Remark 3.3 shows how this problem
can be reduced to a standard problem of Diophantine approximation in number theory for
which there exists a vast literature and that can always be solved, in principle.

In conclusion, I would like to comment on the assumption of compactness and how this
affects applications in quantum control. The assumption of compactness of the Lie group eL

is used in the paper only in two instances. It is used to have a surjective exponential map and
to be able to approximate an exponential of the form eAt with t negative with an exponential
of the same type with t positive. Whenever these two properties hold, the methods of this
paper can still be applied to more general Lie groups. For finite-dimensional closed quantum-
mechanical systems, the dynamical Lie algebra L is always a subalgebra of u(n) and as a
consequence it is always the direct sum of an Abelian Lie algebra and a semisimple one (cf,
e.g., [8, 23]) and this ensures that the exponential map is still surjective. Moreover, although
the Lie group eL may not be compact (due to the presence of a nontrivial Abelian part in the
Lie algebra L) the considerations on approximating elements of the type eAt with t < 0 with
elements of the type eAt with t > 0 can still be repeated, in the topology induced by the one of
U(n) which is compact. Therefore, these algorithms can be applied to the coherent control of
finite-dimensional quantum systems in all cases.
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Appendix. Numerical treatment of the error in the example of section 4.1

To be concrete let us assume that the maximum error we can tolerate is 0.4. From table 1, we
choose n = 105. Fix x := π

44 10−5. We have (cf (59) and table 1)

Err(105) = ∥∥eA5
π
44 − (T5(x))105 ∥∥ < 0.235. (A.1)
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Let T̃5 be the approximation of T5 in (58) where we only use positive values in the exponentials,
appropriately replacing the exponentials of A1. In particular, by rewriting T5(x) in (58) as

T5(x) = e−A1x
1
4
�1(x) e−A1x

1
4
�2(x), (A.2)

with �1(x) = e−A2x
1
4 eA1x

1
4 eA2x

1
4 e−A2x

1
2 e−A2x

1
4 and �2(x) = eA2x

1
4 eA1x

1
4 eA2x

1
2 , we have

T̃5 := T̃5(x1, x) = eA1x1�1(x) eA1x1�2(x). (A.3)

Therefore the actual error Ẽrr is given by

Ẽrr = ∥∥eA5
π
44 − [T̃5(x, x1)

]105∥∥ �
∥∥eA5

π
44 − [T5(x)

]105∥∥ +
∥∥[T5(x)

]105 − [T̃5(x, x1)
]105∥∥

< 0.235 +
∥∥[T5(x)

]105 − [T̃5(x, x1)
]105∥∥, (A.4)

where we used (A.1). Using the formula for A and B unitary matrices11

‖An − Bn‖ � n‖A − B‖, (A.5)

we write

Ẽrr =< 0.235 + 105‖T5(x) − T̃5(x, x1)‖. (A.6)

In view of our bound on the error of 0.4, we need to find x1 > 0 so that ‖T5(x)− T̃5(x, x1)‖ �
0.165 × 10−5. Now, we have∥∥T5 − T̃5

∥∥ = ∥∥e−A1x
1
4
�1 e−A1x

1
4
�2 − eA1x1�1 eA1x1�2

∥∥ = ∥∥�1 − eA1(x
1
4 +x1)�1 eA1(x

1
4 +x1)

∥∥.
(A.7)

Therefore we have∥∥T5 − T̃5

∥∥ �
∥∥�1 − eA1(x

1
4 +x1)�1

∥∥ (A.8)

+
∥∥eA1(x

1
4 +x1)�1 − eA1(x

1
4 +x1)�1 eA1(x

1
4 +x1)

∥∥ = 2
∥∥1 − eA1(x

1
4 +x1)

∥∥.
Therefore, we need to find x1 � 0 so that

‖1 − eA1(x
1
4 +x1)‖ � 0.165 × 10−5

2
. (A.9)

We calculate explicitly the eigenvalues of A1 which are given by ±ir and ±il, with r and l
given by

r :=
√

15 +
√

125

2
, l :=

√
15 − √

125

2
. (A.10)

We have

‖1 − eA1(x
1
4 +x1)‖ = 2

√
1 − cos(r(x

1
4 + x1)) + 1 − cos(l(x

1
4 + x1)). (A.11)

Therefore, setting t := x
1
4 + x1, formula (A.9) is certainly satisfied if

1 − cos(rt) < 8 × 10−14 (A.12)

11 This formula is proved by writing An − Bn =∑n
k=1 An−k(A − B)Bk−1, which gives

∥∥∥An − Bn
∥∥∥ �

n∑
k=1

∥∥∥An−k(A − B)Bk−1
∥∥∥ = n‖A − B‖,

since multiplication (right or left) by a unitary matrix does not modify the Frobenius norm.
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and

1 − cos(lt) < 8 × 10−14. (A.13)

Setting ε := arccos(1 − 8 × 10−14), we need to find t > x
1
4 , positive integers p and q such

that

|rt − 2πp| < ε, |lt − 2πq| < ε. (A.14)

One way to do this is as follows. Fix an integer k > 0 large enough so that

1

k
<

ε

2π
. (A.15)

According to Dirichlet’s approximation theorem (see, e.g., [25, theorem 1.3]) we can find p
and q, with 1 � p � k positive integers so that∣∣∣∣ lr p − q

∣∣∣∣ < 1

k
. (A.16)

Choose p and q this way [2, 16] and

t = 2πp

r
. (A.17)

Using this value of t, the first one of (A.14) is verified because the left-hand side becomes
zero. Replacing this value of t in the second one of (A.14) and using (A.15) and (A.16) we
obtain that the second inequality is satisfied as well. Moreover, since q � 1, we have that

t � 2π

r
≈ 1.7366 > x

1
4 =

( π

44
10−5

) 1
4 ≈ 0.0291. (A.18)
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